得书 - 好书推荐、正版图书免费阅读
首页
书库
排行榜
VIP会员
新书
快讯
注册 | 登录
100 条"小白学数据挖掘与机器学习——SPSSModeler案例篇"搜索结果
小白学数据挖掘与机器学习——SPSSModeler案例篇
张浩彬
通俗易懂传授数据科学,结合SPSSModeler与行业案例。
电子书
机器学习与数据挖掘
王璐烽
本书以项目实践作为主线,结合必需的理论知识,以任务的形式进行内容设计,每个任务都包含任务描述及任务实施的步骤,读者按照实施步骤进行操作就可以完成相应的学习任务,从而不断提升项目实践能力。本书主要内容涉及机器学习的基础知识,模型评估与选择,回归、分类、聚类等机器学习算法,数据挖掘的基础知识,数据分析与应用,以及通过用户行为分析预测项目学习如何将机器学习与数据挖掘应用到实际中。本书适合使用机器学习与数
电子书
机器学习与大数据技术
牟少敏
本书较为全面地论述了机器学习、深度学习、大数据技术与图像处理技术的基本概念、基础原理和基本方法,以农业为应用场景,力求通缩易懂,深入浅出的介绍了与机器学习、深度学习、大数据技术与图像处理技术问题联系密切的内容。全书主要分为4大部分:机器学习、大数据技术和图像处理技术的基础知识;经典的机器学习基本理论和方法,以及深度学习和大数据未来的发展;实践应用;机器学习和人工智能的数学基础与编程基础。
电子书
机器学习案例实战
赵卫东
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特点;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗
电子书
动手学机器学习
张伟楠
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量
电子书
数据挖掘
宋万清
本书着力于介绍数据挖掘基础知识、基本原理、常用算法,主要内容包括数据挖掘概述、数据的描述与可视化、数据的采集和预处理、数据的归约、关联规则挖掘、分类与预测、非线性预测模型、聚类分析、深度学习简介、使用Weka进行数据挖掘。本书通俗易懂,注重基础知识、基本原理和基本方法,注重启发和引申,以培养学生独立思考和独立发现的能力。 本书适合作为数据科学与大数据、信息管理、统计等专业的本科层次基础课教材,也
电子书
跟着迪哥学:Python数据分析与机器学习实战
唐宇迪
本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
电子书
Python数据分析与挖掘
杨玲
本书面向大数据应用型人才,以任务为导向,系统地介绍Python数据分析与挖掘的常用技术与真实案例。全书共7章,第1、2章介绍Python数据分析的常用模块及其应用,涵盖NumPy数值计算模块、pandas数据分析模块,较为系统地阐述Python数据分析的方法;第3、4章介绍轻量级的数据交换格式JSON和连接MySQL数据库的pymysql模块,并以此进行数据综合案例的分析;第5章介绍Matplot
电子书
大数据分析与挖掘
石胜飞
数据科学与大数据技术专业系列规划教材。强调概念+算法实践,让你“小数据”上会“算”,“大数据”上“算得快”。
电子书
Python数据处理与挖掘
吴振宇 李春忠 李建锋
本书以构建完整的知识体系为目标,按照从简单到复杂的思路,贯穿了数据处理与挖掘的各个环节,具体包括:Python快速入门、Python数据类型、Python常用模块、Python数据获取、Python数据挖掘基础、Python数据挖掘算法、Python大数据挖掘和Python数据可视化。此外,针对各知识点,全书均设计了相应的Python案例,并给出了实现代码、效果图以及相应的解释,以强化读者对各知识
电子书
机器学习案例实战(第2版)
赵卫东 著
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了主流机器学习平台的主要特点以及机器学习的实战难点。在此基础上,利用主流的机器学习开源平台TensorFlow、OpenVINO、PaddlePaddle等,通过17个实战案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、聚类、卷积神经网络、循环神经网络、生成对抗网络等机器学习和
电子书
零基础学机器学习
黄佳
轻松入门机器学习,理论实战并重,适合零基础学习者。
电子书
数据挖掘及其应用
李燕
随着互联网、云计算和人工智能等高科技信息技术的飞速发展,人类已迈入大数据时代,但很多时候我们会感到被数据淹没,却缺乏知识的困境,并没有“得数据者得天下”的能力,我们迫切需要从海量数据中,找到值得参考的样型或规则,转换成有价值的信息或知识,创造更多新价值,因此,数据挖掘成了我们提取数据信息的必要窗口。 本书共8章,主要介绍了数据挖掘的理论方法与实践应用,内容涵盖了关联规则挖掘、决策树分析、聚类分析
电子书
机器学习
董亮
机器学习基础与高级内容全面讲解,实例丰富,易于学习巩固。
电子书
Python高手修炼之道:数据处理与机器学习实战
许向武
适读人群:1.没有编程知识的新手不同于一般的基础语法讲解教程,本书并未将Python开发限定于某个集成开发工具(IDE)中,而是采用交互式编程的方式来强化读者对语言特性的理解,帮助新手读者真正理解Python语言和Python编程。2.从未接触过Python语言,但了解一点编程知识的初学者本书通过对基础知识高度的提炼和概括,以避免初学者陷入低级且冗长的细节知识点而心生懈怠;同时,本书为初学者规划了从初级到高级的编程技能提升路线图。3.具有一定基础的Python程序员本书可以作为案头工具书来使用。本书从基础语法、基本技能讲起,涵盖了科学计算、数据处理、机器学习等领域,示例代码涉及30余个模块的使用。构建从Python入门到数据分析到机器学习的路线图,入门有章可循;1.讲解独到,常见盲点趣解析作者基于多年的经验积累,善于总结概括初学Python过程中的误区。2.内容全面,常用工具全涵盖书中介绍的Python工具包覆盖Numpy、Matplotlib、Pandas、SciPy、Scikit-Learn,方便读者拓展实用技能、掌握工作利器。3.拓展训练,重点知识有强化语感训练100题、Python内置函数(类)手册、从新手到高手的100个模块,强化知识点的掌握。4.代码完整,随时动手可复现本书提供了完整、可验证的代码,方便读者动手练习并强化理解。
电子书
Python数据分析与挖掘实战
翟世臣,张良均 主编
本书共11章,分为基础篇(第1-5章)和实战篇(第6-11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识:实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预测、电视产品个性化推荐,以及基于TipDM大数据挖掘建模平台实现金融服务机构资金流量预测。本书大部分章节包含实训和课后
电子书
机器学习原理与实战
何伟,张良均 主编
本书共11章,分别介绍了机器学习概述、数据准备、特征工程、有监督学习、无监督学习、智能推荐的相关知识,并介绍了市财政收入分析案例、基于非侵入式电力负荷监测与分解的电力分析案例、航空公司客户价值分析案例、广电大数据营销推荐案例以及基于TipDM数据挖掘建模平台实现航空公司客户价值分析案例。
电子书
机器学习与Python实践
黄勉
机器学习理论实践全书,12章内容丰富,适合各层次读者。
电子书
数据产品经理高效学习手册:产品设计、技术常识与机器学习
张威
详解产品设计思维框架和具体操作流程。
电子书
大数据时代的数据挖掘
李涛
(1)内容全面,覆盖当前数据挖掘的主要应用。在介绍每个应用案例时,详细阐述应用的背景,该领域中数据的来源和特点,数据采集与预处理方式,应用领域中数据挖掘的任务和实施数据挖掘技术的难点。同时提供相应的数据挖掘算法分析、工具设计以及系统实现。(2)条理清晰、便于理解。一方面,面向热爱和关心数据挖掘技术的学术界和工业界读者,帮助他们更好地理解研究的目的和应用的基础;另一方面,让没有太多相关技术背景的读者可以通过阅读本书能够了解数据挖掘的意义和价值,可以看出数据挖掘是如何被广泛地应用于实际案例并成为解决各种问题的核心工具。
电子书
Python金融数据分析与挖掘实战
黄恒秋
深入浅出地为你介绍如何使用Python进行金融数据分析、挖掘和量化投资的全过程。
文章导航
1
2
3
4
5
>
推荐书籍
电子书
IBM SPSS Modeler 18.0数据挖掘权威指南
张浩彬
联袂推荐暨南大学教授、博士生导师刘建平,暨南大学研究生院副院长、经济学院统计学系副主任、教授、博士生导师陈光慧,天善智能创始人梁勇,IBM技术专家刘咏梅,IBM数据科学家钟云飞...
相关词语
人工智能
数据分析
机器学习
深度学习
python编程
从入门到实践
大数据
数据挖掘
华为
大数据分析
科技关键词
Python
周志华
程序设计
软件工具
教材
产品经理
产品设计
数据处理
推荐系统
文本挖掘
生物医疗大数据
隐私保护
金融
分析
应用
意见反馈
我的书架
公众号
关注微信公众号