100 条"深度强化学习核心算法与应用"搜索结果
深度学习算法与实践 电子书
  • 于子叶
  • 本书旨在为读者建立完整的深度学习知识体系。全书内容包含3个部分,第一部分为与深度学习相关的数学基础;第二部分为深度学习的算法基础以及相关实现;第三部分为深度学习的实际应用。
深度强化学习实战 电子书
深度学习之摄影图像处理:核心算法与案例精粹 电子书
  • 言有三
  • 本书内容涉及摄影学、计算机视觉、深度学习3个领域,系统地介绍了计算机视觉在图像质量和摄影学各个领域的核心算法和应用,包括传统的图像处理算法和深度学习核心算法。本书理论知识体系完备,同时提供大量实例,供读者实战演练。本书融合摄影学和计算机视觉的内容,覆盖面非常广。第1章简单介绍摄影的历史、摄影与图像的基本概念和摄影中的许多基本技巧。从第2章开始,本书对摄影学中图像处理算法的各个重要方向进行介绍,包括
深度学习技术与应用 电子书
  • 许桂秋
  • 本书旨在介绍人工智能中深度学习的基础知识,为即将进入深度学习领域进行研究的读者奠定基础。全书共13章,其中,第1~4章为理论部分,第5~13章为应用部分。理论部分介绍了机器学习和深度学习的基本内容,以及TensorFlow开发框架的搭建和使用;应用部分设置了多个项目案例,并介绍了这些案例详细的实现步骤和代码,使读者在练习中熟悉和掌握相关知识的应用方法与技巧。本书采用项目驱动的编写方式,做到了理论和
Python深度学习:逻辑、算法与编程实战 电子书
  • 何福贵 编著
  • 机器学习是人工智能领域一个极其重要的研究方向,而深度学习则是机器学习中一个非常接近AI的分支,其思路在于建立进行分析学习的神经网络,模仿人脑感知与组织的方式,根据输入数据做出决策。深度学习在快速的发展过程中,不断有与其相关的产品推向市场,显然,深度学习的应用将会日趋广泛。《Python深度学习:逻辑、算法与编程实战》是关于深度学习的理论、算法、应用的实战教程,内容涵盖深度学习的语言、学习环境、典型
TensorFlow深度学习基础与应用 电子书
  • 杨虹 谢显中 周前能 王智鹏 张安文编著
  • 本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
算法学习与应用从入门到精通 电子书
  • 张玲玲
  • 一本书的容量,讲解了入门类、范例类和项目实战类三类图书的内容。
深度学习时代的计算机视觉算法 电子书
  • 本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法和图像超分辨率重建方法进行了介绍。
深度学习高手笔记·卷1:基础算法 电子书
  • 刘岩
  • 本书从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。
深度学习与围棋 电子书
深度强化学习实战:用OpenAI Gym构建智能体 电子书
  • 普拉文·巴拉尼沙米(Praveen
  • 这是一本介绍用OpenAIGym构建智能体的实战指南。全书先简要介绍智能体和学习环境的一些入门知识,概述强化学习和深度强化学习的基本概念和知识点,然后重点介绍OpenAIGym的相关内容,随后在具体的Gym环境中运用强化学习算法构建智能体。本书还探讨了这些算法在游戏、自动驾驶领域的应用。本书适合想用OpenAIGym构建智能体的读者阅读,也适合对强化学习和深度强化学习感兴趣的读者参考。读者应具备一
网络智能化中的深度强化学习技术 电子书
  • 王敬宇
  • 随着人工智能技术的广泛应用,网络智能化近年来受到广泛的关注,已经成为下一代移动通信与未来网络的重要技术。阿尔法围棋(AlphaGo)之后,深度强化学习不断推陈出新,为网络中的决策问题提供了有效的潜在解决方案。本书系统介绍了网络智能化中深度强化学习的基本理论、算法及应用场景。全书共8章,针对互联网、移动通信网、边缘网络、数据中心等典型网络,阐述了网络管理、网络控制、任务调度等决策需求,深入论述了深度
智能控制与强化学习 电子书
  • 在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次
深度学习 电子书
  • [美]伊恩·古德费洛
  • 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
  • 徐立芳
  • 本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
机器视觉与机器学习:算法原理、框架应用与代码实现 电子书
  • 宋丽梅 朱新军 编著
  • 《机器视觉与机器学习——算法原理、框架应用与代码实现》内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为ShapefromX;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、IntelRealSense等深度相机的知识与相关
深度学习在动态媒体中的应用与实践 电子书
  • 唐宏、陈麒、庄一嵘
  • 本书是一本深度学习的基础入门读物,对深度学习的基本理论进行了介绍,主要以Ubuntu系统为例搭建了三大主流框架——Caffe、TensorFlow、Torch,然后分别在3个框架下,通过3个实战项目掌握了框架的使用方法,并详细描述了生产流程,最后讲述了通过集群部署深度学习的项目以及如何进行运营维护的注意事项。本书适合对深度学习有浓厚兴趣的读者、希望用深度学习完成设计的计算机专业或电子信息专业的高校
联邦学习:原理与算法 电子书
  • 王伟
  • 人工智能机器学习教程书籍,平安科技联邦学习团队执笔,由浅入深介绍联邦机器学习的算法体系,注重工程实践,保证理论前沿性。
深度学习原理与实践 电子书
  • 陈仲铭
  • (1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。(2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。(3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。(4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。(5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。--唐春明 广州大学数学与信息学科学院副院长本书从原理、方法、实践这3个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。--杨刚 西安电子科技大学教授近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对ANN、CNN、RNN等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐!--吴健之 腾讯音乐高级工程师作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看!--张瑞 中软国际高级产品经理
深度学习与TensorFlow实战 电子书
  • 李建军 王希铭 潘勉 等
  • 本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到