100 条"深度学习及自动驾驶应用"搜索结果
  • 徐国艳 编著
  • 系统讲述了深度学习基础、高阶和前沿技术理论及工程实践。
深度学习技术与应用 电子书
  • 许桂秋
  • 本书旨在介绍人工智能中深度学习的基础知识,为即将进入深度学习领域进行研究的读者奠定基础。全书共13章,其中,第1~4章为理论部分,第5~13章为应用部分。理论部分介绍了机器学习和深度学习的基本内容,以及TensorFlow开发框架的搭建和使用;应用部分设置了多个项目案例,并介绍了这些案例详细的实现步骤和代码,使读者在练习中熟悉和掌握相关知识的应用方法与技巧。本书采用项目驱动的编写方式,做到了理论和
TensorFlow深度学习基础与应用 电子书
  • 杨虹 谢显中 周前能 王智鹏 张安文编著
  • 本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
深度学习 电子书
  • [美]伊恩·古德费洛
  • 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
  • 徐立芳
  • 本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
华为MindSpore深度学习框架应用开发实战 电子书
  • 编著
  • 全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度学
JavaScript深度学习 电子书
  • 尼尔森
  • 深度学习扛鼎之作《Python深度学习》姊妹篇,前端工程师不可错过的AI入门书。
Python 深度学习 电子书
  • 吕云翔 刘卓然 关捷雄 等编著
  • 《Python深度学习》以深度学习框架为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架(以PyTorch为例)基础、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信
云安全深度剖析:技术原理及应用实践 电子书
  • 徐保民
  • 本书在介绍云计算的一些核心概念和云安全的基础知识上,重点讲述云数据的安全和云环境下隐私性的保护技术。同时结合不同厂商的云服务平台详细介绍IaaS、PaaS、SaaS三种云服务平台所面临的安全威胁和提供的安全防护技术。随后结合我们已有的研究成果,重点介绍云服务风险的管理和评测方法。并对目前的比较有影响力的云安全标准进行概述。本书可作为云计算行业从业人员、云服务提供商、网络信息安全领域研究人员的参考书
机器学习及应用(在线实验+在线自测) 电子书
  • 李克清
  • 机器学习原理与实例代码,包括决策树、神经网络等11章。
PyTorch深度学习实战 电子书
  • [美]伊莱·史蒂文斯(Eli,Stevens),[意]卢卡·安蒂加(Luca Antiga),等
  • 1.PyTorch核心开发者教你使用PyTorch创建神经网络和深度学习系统的实用指南。2.详细讲解整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及对结果进行可视化。3.PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:a.全面掌握PyTorch相关的API的使用方法以及系统掌握深度学习的理论和方法;b.快速从零开始构建一个真实示例:肿瘤图像分类器;c.轻松学会使用PyTorch实现各种神经网络模型来解决具体的深度学习问题;d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。4.PyTorch联合创作者SoumithChintala作序推荐!5.书中所有代码都是基于Python3.6及以上的版本编写的,提供源代码下载。
深度学习与围棋 电子书
深度学习在动态媒体中的应用与实践 电子书
  • 唐宏、陈麒、庄一嵘
  • 本书是一本深度学习的基础入门读物,对深度学习的基本理论进行了介绍,主要以Ubuntu系统为例搭建了三大主流框架——Caffe、TensorFlow、Torch,然后分别在3个框架下,通过3个实战项目掌握了框架的使用方法,并详细描述了生产流程,最后讲述了通过集群部署深度学习的项目以及如何进行运营维护的注意事项。本书适合对深度学习有浓厚兴趣的读者、希望用深度学习完成设计的计算机专业或电子信息专业的高校
深度学习原理与实践 电子书
  • 陈仲铭
  • (1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。(2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。(3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。(4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。(5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。--唐春明 广州大学数学与信息学科学院副院长本书从原理、方法、实践这3个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。--杨刚 西安电子科技大学教授近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对ANN、CNN、RNN等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐!--吴健之 腾讯音乐高级工程师作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看!--张瑞 中软国际高级产品经理
动手打造深度学习框架 电子书
  • 李伟
  • 本书基于C++编写,旨在带领读者动手打造出一个深度学习框架。
深度学习算法与实践 电子书
  • 于子叶
  • 本书旨在为读者建立完整的深度学习知识体系。全书内容包含3个部分,第一部分为与深度学习相关的数学基础;第二部分为深度学习的算法基础以及相关实现;第三部分为深度学习的实际应用。
深度学习实战之PaddlePaddle 电子书
  • 潘志宏 王培彬 万智萍 邱泽敏
  • 内容提要本书全面讲解了深度学习框架PaddlePaddle,并结合典型案例,阐述了PaddlePaddle的具体应用。本书共15章。第1章介绍了深度学习及其主流框架;第2章介绍了几种不同的PaddlePaddle安装方式;第3章使用MNIST数据集实现手写数字识别;第4章介绍CIFAR彩色图像识别;第5章介绍了自定义数据集的识别;第6章介绍了验证码的识别;第7章介绍了场景文字的识别;第8章实现了验
深度强化学习实战 电子书
深度学习与TensorFlow实战 电子书
  • 李建军 王希铭 潘勉 等
  • 本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到
TensorFlow 2深度学习实战 电子书
  • 张良均
  • 本书以深度学习的常用技术与TensorFlow2真实案例相结合的方式,深入浅出地介绍TensorFlow2实现深度学习的重要内容。全书共7章,分为基础篇(第1~3章)和实战篇(第4~7章),基础篇内容包括深度学习概述、TensorFlow2快速入门、深度神经网络原理及实现等基础知识;实战篇内容包括4个案例,分别为基于CNN的门牌号识别、基于LSTM网络的语音识别、基于CycleGAN的图像风格转换
PyTorch与深度学习实战 电子书
  • 胡小春
  • 本书以PyTorch深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用PyTorch实现深度学习应用的重要内容。本书共7章,内容包括深度学习概述、PyTorch深度学习通用流程、PyTorch深度学习基础、手写汉字识别、文本生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现文本生成等。本书大部分章包含实训和课后习题,希望通过练习和操作实践,帮助读者巩固所学的内