100 条"深度实践OCR:基于深度学习的文字识别"搜索结果
PyTorch与深度学习实战 电子书
  • 胡小春
  • 本书以PyTorch深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用PyTorch实现深度学习应用的重要内容。本书共7章,内容包括深度学习概述、PyTorch深度学习通用流程、PyTorch深度学习基础、手写汉字识别、文本生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现文本生成等。本书大部分章包含实训和课后习题,希望通过练习和操作实践,帮助读者巩固所学的内
动手打造深度学习框架 电子书
  • 李伟
  • 本书基于C++编写,旨在带领读者动手打造出一个深度学习框架。
深度学习实战之PaddlePaddle 电子书
  • 潘志宏 王培彬 万智萍 邱泽敏
  • 内容提要本书全面讲解了深度学习框架PaddlePaddle,并结合典型案例,阐述了PaddlePaddle的具体应用。本书共15章。第1章介绍了深度学习及其主流框架;第2章介绍了几种不同的PaddlePaddle安装方式;第3章使用MNIST数据集实现手写数字识别;第4章介绍CIFAR彩色图像识别;第5章介绍了自定义数据集的识别;第6章介绍了验证码的识别;第7章介绍了场景文字的识别;第8章实现了验
深度学习与TensorFlow实战 电子书
  • 李建军 王希铭 潘勉 等
  • 本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到
深度强化学习实战 电子书
深度学习技术与应用 电子书
  • 许桂秋
  • 本书旨在介绍人工智能中深度学习的基础知识,为即将进入深度学习领域进行研究的读者奠定基础。全书共13章,其中,第1~4章为理论部分,第5~13章为应用部分。理论部分介绍了机器学习和深度学习的基本内容,以及TensorFlow开发框架的搭建和使用;应用部分设置了多个项目案例,并介绍了这些案例详细的实现步骤和代码,使读者在练习中熟悉和掌握相关知识的应用方法与技巧。本书采用项目驱动的编写方式,做到了理论和
深度学习的数学——使用Python语言 电子书
Flink与Kylin深度实践 电子书
  • 开课吧 组编 王超 李沙 编著
  • 本书从实用角度出发,首先介绍了Flink的功能模块、运行模式、部署安装等内容,然后着重介绍了Flink中的实时处理技术和批量处理技术,接着讲解了Flink的Table与SQL、CEP机制、调优与监控、实时数据同步解析,*后通过Flink结合Kylin实现了实时数据统计的功能。本书内容全面,由浅入深,包含大量的代码示例,并提供下载服务,每章配有重要知识点串讲视频和小结,以指导读者轻松入门。本书适合有
深度学习:基于Python语言和TensorFlow平台(视频讲解版) 电子书
  • 谢琼
  • 本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
用Python实现深度学习框架 电子书
  • 陈震
  • 本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
PaddlePaddleFluid深度学习入门与实战 电子书
  • 潘志宏
  • 本书全面讲解PaddlePaddleFluid框架在深度学习领域的应用。
深度学习程序设计实战 电子书
  • 方林 编著
  • 本书以Python语言和Tensorflow为工具,由浅入深地讲述了深度学习程序设计的基本原理、算法和思考问题的方法,内容包括自顶向下的程序设计、递归程序设计、面向对象的程序设计、反向传播算法、三层神经网络、卷积神经网络、循环神经网络、生成式对抗网络和目标检测等。
深度学习从入门到精通 电子书
  • 谢佳标 主编
  • 本书基于当前流行的深度学习框架之一——Keras,从新手的角度出发,详细讲解Keras的原理,力求帮助读者实现Keras从入门到精通。全书共9章,主要内容包括初识深度学习、深度学习的数据预处理技术、使用Keras开发深度学习模型、卷积神经网络及图像分类、循环神经网络在文本序列中的应用、自编码器、生成式对抗网络、模型评估及模型优化,以及深度学习实验项目。本书内容由浅入深、语言通俗易懂,从基本原理到案
动手学深度学习(PyTorch版) 电子书
  • 阿斯顿·张(Aston Zhang),李沐(Mu Li),等
  • ·深度学习领域重磅作品《动手学深度学习》重磅推出PyTorch版本;·李沐、阿斯顿·张等大咖作者强强联合,精心编撰;·全球400多所大学采用的教科书,提供视频课程、教学PPT、习题,方便教师授课与学生自学;·能运行、可讨论的深度学习入门书,可在线运行源码并与作译者实时讨论。
深度学习与医学图像处理 电子书
  • 陈峰蔚 编著
  • 一本介绍“如何使用深度学习方法解决医学图像处理问题”的入门图书。
Python深度学习(第2版) 电子书
TensorFlow深度学习项目实战(深度学习系列) 电子书
  • [美] 卢卡·马萨罗
  • 本书用TensorFlow框架针对现实场景设计深度学习系统,实现有趣的深度学习项目。
TensorFlow深度学习基础与应用 电子书
  • 杨虹 谢显中 周前能 王智鹏 张安文编著
  • 本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
Python深度学习与项目实战 电子书
  • 本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
灵感的深度 电子书
  • 马新立
  • 本书收录的文章分领导调研、动态事件、经验概览、深度透视、人物写真、工作纪实、监督聚焦、时事评论、理论探讨九个专题。