得书 - 好书推荐、正版图书免费阅读
首页
书库
排行榜
VIP会员
新书
快讯
注册 | 登录
100 条"Python高级数据分析:机器学习、深度学习和NLP实例"搜索结果
Python高级数据分析:机器学习、深度学习和NLP实例
[印] 萨扬·穆霍帕迪亚
本书包含数据分析实例,涵盖从基础统计学到ETL、深度学习和物联网的广泛领域,给出了分析项目技术方面的概念。
电子书
深度学习
徐立芳
本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
电子书
机器学习
董亮
机器学习基础与高级内容全面讲解,实例丰富,易于学习巩固。
电子书
Python深度学习:逻辑、算法与编程实战
何福贵 编著
机器学习是人工智能领域一个极其重要的研究方向,而深度学习则是机器学习中一个非常接近AI的分支,其思路在于建立进行分析学习的神经网络,模仿人脑感知与组织的方式,根据输入数据做出决策。深度学习在快速的发展过程中,不断有与其相关的产品推向市场,显然,深度学习的应用将会日趋广泛。《Python深度学习:逻辑、算法与编程实战》是关于深度学习的理论、算法、应用的实战教程,内容涵盖深度学习的语言、学习环境、典型
电子书
人工智能和深度学习导论
)
本书首先介绍了人工智能的基础知识,然后分别介绍了机器学习、深度学习、自然语言处理和强化学习中的重点概念和实践过程,包含逻辑斯谛回归、k最近邻、决策树、随机森林、支持向量机、卷积神经网络、循环神经网络、LSTM、自动编码器等。此外,本书的附录部分还分别简单介绍了Keras、TensorFlow、pandas等人工智能相关的工具。本书适用于高等院校电子信息类专业的人工智能导论课程,也适合想要对人工智能
电子书
JavaScript深度学习
尼尔森
深度学习扛鼎之作《Python深度学习》姊妹篇,前端工程师不可错过的AI入门书。
电子书
机器学习实战
[美]PeterHarrington
《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。
电子书
实用机器学习
孙亮 黄倩
大数据时代为机器学习的应用提供了广阔的空间,各行各业涉及数据分析的工作都需要使用机器学习算法。本书围绕实际数据分析的流程展开,着重介绍数据探索、数据预处理和常用的机器学习算法模型。本书从解决实际问题的角度出发,介绍回归算法、分类算法、推荐算法、排序算法和集成学习算法。在介绍每种机器学习算法模型时,书中不但阐述基本原理,而且讨论模型的评价与选择。为方便读者学习各种算法,本书介绍了R语言中相应的软件包
电子书
机器学习基础
编著
近年来人工智能技术蓬勃发展,人工智能正在改变我们的生活。为了让读者在不需要掌握太多数学和计算机科学知识的情况下,能够快速上手,使用Python语言实现常用的机器学习算法,并解决一些实际的问题,我们策划并出版本书。本书共14章,内容涵盖基本的机器学习概念和环境搭建,目前各个领域中的热门算法,以及数据预处理、模型评估和文本数据分析等。希望本书可以让读者轻松入门,在动手实践的过程中找到乐趣。本书可以作为
电子书
机器学习实战
编著
本书共11章,从推荐系统的发展历史、基本构成开始,依次剖析推荐系统的内容召回、协同过滤召回、深度学习召回中具有代表性的模型;再从经典排序模型到基于深度学习的排序,顺势介绍会话推荐、强化学习推荐及工业级推荐,搭建了完整的推荐系统技术体系,这是一个由浅入深的系统学习过程。
电子书
Python计算机视觉与深度学习实战
戴亮
一本书入门计算机视觉,将深度学习理论融入视觉识别案例,搭建理论与实践的桥梁。
电子书
PyTorch深度学习实战
[美]伊莱·史蒂文斯(Eli,Stevens),[意]卢卡·安蒂加(Luca Antiga),等
1.PyTorch核心开发者教你使用PyTorch创建神经网络和深度学习系统的实用指南。2.详细讲解整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及对结果进行可视化。3.PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:a.全面掌握PyTorch相关的API的使用方法以及系统掌握深度学习的理论和方法;b.快速从零开始构建一个真实示例:肿瘤图像分类器;c.轻松学会使用PyTorch实现各种神经网络模型来解决具体的深度学习问题;d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。4.PyTorch联合创作者SoumithChintala作序推荐!5.书中所有代码都是基于Python3.6及以上的版本编写的,提供源代码下载。
电子书
深度学习与围棋
(美) 马克斯·帕佩拉 (Max Pumperla)
深入浅出的深度学习入门书,从零实现AlphaGo,为AI理论和应用打下基础。
电子书
场景化机器学习
[澳]道格·哈金(Doug
本书展示了如何在业务场景中应用机器学习,全书分为三个部分。第一部分介绍有效的决策如何帮助公司提高生产率以保持竞争力,阐释如何使用开源工具和AWS工具将机器学习应用于业务决策中。第二部分以虚拟人物为主线,研究六个场景,这些场景展示了如何使用机器学习来制定各种业务决策。第三部分讨论如何在Web上设置和共享机器学习模型,还介绍了一些案例。
电子书
机器学习公式详解
谢文睿
适读人群:(1)高等院校人工智能、计算机、自动化等相关专业机器学习方向的学生;(2)学术界机器学习领域的研究人员和教师;(3)工业界对机器学习感兴趣的专业人员和工程师。1.周志华教授“西瓜书”《机器学习》公式完全解析指南!“南瓜书”系Datawhale成员自学笔记,对“西瓜书”中250个重难点公式做了详细解析和推导(重难点公式覆盖率达99%),旨在解决机器学习中的数学难题。2.机器学习初学小白提升数学基础能力的必备练习册!以本科数学基础视角对“西瓜书”里比较难理解的公式加以解析和推导细节,补充大量重、难点数学知识和参考材料,分享在学习中遇到的“坑”以及跳过这个“坑”的方法,对于初学机器学习的小白也能上手练习!3.俞勇、王斌、李沐、程明明、陈光(博主@爱可可-爱生活)、徐亦达等人工智能领域大咖亲笔推荐
电子书
机器学习工程实战
[加] 安德烈·布可夫
机器学习入门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深入浅出讲解机器学习应用和工程实践。
电子书
机器学习案例实战
赵卫东
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特点;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗
电子书
动手学机器学习
张伟楠
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量
电子书
Python数据分析
吴道君,朱家荣
本书全面讲解Python数据分析的相关知识和技术,内容包括Python数据分析概述、NumPy数值计算、Matplotlib数据可视化、Pandas数据分析、数据预处理、Sklearn机器学习。 本书以培养学生编程能力和数据分析能力为目标,注重技术应用能力的培养。 本书内容充实、结构合理、实用性强,具有明确的应用能力培养目标,易于接受和理解,学完本书后,可以具备数据分析的基本能力。 本书适合
电子书
深度学习:基于Python语言和TensorFlow平台(视频讲解版)
谢琼
本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
电子书
深度学习原理与实践
陈仲铭
(1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。(2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。(3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。(4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。(5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。--唐春明 广州大学数学与信息学科学院副院长本书从原理、方法、实践这3个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。--杨刚 西安电子科技大学教授近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对ANN、CNN、RNN等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐!--吴健之 腾讯音乐高级工程师作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看!--张瑞 中软国际高级产品经理
文章导航
<
1
2
3
4
5
>
推荐书籍
相关词语
人工智能
大数据
机器学习
深度学习
Python
华为
周志华
教材
程序设计
JavaScript
高等学校
JAVA语言
数据分析
算法
数据挖掘
计算机
编程
MachineLearning
NumPy
视觉识别
科技关键词
编程开发
应用
围棋
研究
2021
一人で頑張って
ai
谷歌
tensorflow
意见反馈
我的书架
公众号
关注微信公众号