100 条"深度学习:卷积神经网络技术与实践"搜索结果
  • 高敬鹏
  • 本书打破传统书籍的讲解方法,在介绍各部分理论基础的同时,搭配具体实例,通过对相关程序的详细讲解进一步加深对理论基础的理解。
PaddlePaddleFluid深度学习入门与实战 电子书
  • 潘志宏
  • 本书全面讲解PaddlePaddleFluid框架在深度学习领域的应用。
Python深度学习与项目实战 电子书
  • 本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
TensorFlow深度学习基础与应用 电子书
  • 杨虹 谢显中 周前能 王智鹏 张安文编著
  • 本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
深度学习与医学图像处理 电子书
  • 陈峰蔚 编著
  • 一本介绍“如何使用深度学习方法解决医学图像处理问题”的入门图书。
PyTorch深度学习实战 电子书
  • [美]伊莱·史蒂文斯(Eli,Stevens),[意]卢卡·安蒂加(Luca Antiga),等
  • 1.PyTorch核心开发者教你使用PyTorch创建神经网络和深度学习系统的实用指南。2.详细讲解整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及对结果进行可视化。3.PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:a.全面掌握PyTorch相关的API的使用方法以及系统掌握深度学习的理论和方法;b.快速从零开始构建一个真实示例:肿瘤图像分类器;c.轻松学会使用PyTorch实现各种神经网络模型来解决具体的深度学习问题;d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。4.PyTorch联合创作者SoumithChintala作序推荐!5.书中所有代码都是基于Python3.6及以上的版本编写的,提供源代码下载。
电容型设备相对介质损耗因数及电容量比值测量 电子书
  • 国网技术学院
  • 本书主要内容包括电容型设备相对介质损耗因数及电容量比值测量基本原理、带电检测仪现场操作、测试数据分析及设备状态诊断。附录包括练习题库、作业指导书、技能操作考核评分表、带电检测报告和变电站(发电厂)第二种工作票。
机器学习与Python实践 电子书
  • 黄勉
  • 机器学习理论实践全书,12章内容丰富,适合各层次读者。
深度学习与飞桨PaddlePaddle Fluid实战 电子书
  • 于祥
  • 飞桨PaddlePaddle是百度推出的深度学习框架,不仅支撑了百度公司的很多业务和应用,而且随着其开源过程的推进,在其他行业得到普及和应用。本书基于2019年7月4日发布的飞桨PaddlePaddleFluid1.5版本(后续版本会兼容旧版本),以真实案例介绍如何应用飞桨PaddlePaddle解决主流的深度学习问题。本书适合对人工智能感兴趣的学生、从事机器学习相关工作的读者阅读,尤其适合想要通过飞桨PaddlePaddle掌握深度学习应用技术的研究者和从业者参考。本书包括以下内容:●飞桨PaddlePaddle的核心设计思想;●PaddlePaddle在MNIST上进行手写数字识别;●图像分类网络实现案例;●“天网”中目标检测和像素级物体分割的实现;●NLP技术应用案例:word2vec、情感分析、语义角色标注及机器翻译;●Paddle-Mobile与Anakin框架等高级主题;●飞桨PaddlePaddle与TensorFlow、Caffe框架的常用层对比。
Python深度学习:逻辑、算法与编程实战 电子书
  • 何福贵 编著
  • 机器学习是人工智能领域一个极其重要的研究方向,而深度学习则是机器学习中一个非常接近AI的分支,其思路在于建立进行分析学习的神经网络,模仿人脑感知与组织的方式,根据输入数据做出决策。深度学习在快速的发展过程中,不断有与其相关的产品推向市场,显然,深度学习的应用将会日趋广泛。《Python深度学习:逻辑、算法与编程实战》是关于深度学习的理论、算法、应用的实战教程,内容涵盖深度学习的语言、学习环境、典型
深度学习与计算机视觉实战 电子书
  • 主编
  • 本书以深度学习在计算机视觉领域的常用技术与案例相结合的方式,深入浅出地介绍计算机视觉的常见任务及实现技术。全书共7章,内容包含概述、图像处理基本操作、深度学习视觉基础任务、基于FaceNet的人脸识别实战、基于FasterR-CNN的目标检测实战、基于U-Net的城市道路场景分割实战、基于SRGAN的图像超分辨率技术实战等。本书大部分章包含操作实践代码和课后习题,希望能够帮助读者在计算机视觉基础任
TensorFlow 2深度学习实战 电子书
  • 张良均
  • 本书以深度学习的常用技术与TensorFlow2真实案例相结合的方式,深入浅出地介绍TensorFlow2实现深度学习的重要内容。全书共7章,分为基础篇(第1~3章)和实战篇(第4~7章),基础篇内容包括深度学习概述、TensorFlow2快速入门、深度神经网络原理及实现等基础知识;实战篇内容包括4个案例,分别为基于CNN的门牌号识别、基于LSTM网络的语音识别、基于CycleGAN的图像风格转换
动手打造深度学习框架 电子书
  • 李伟
  • 本书基于C++编写,旨在带领读者动手打造出一个深度学习框架。
深度强化学习实战 电子书
深度学习实战之PaddlePaddle 电子书
  • 潘志宏 王培彬 万智萍 邱泽敏
  • 内容提要本书全面讲解了深度学习框架PaddlePaddle,并结合典型案例,阐述了PaddlePaddle的具体应用。本书共15章。第1章介绍了深度学习及其主流框架;第2章介绍了几种不同的PaddlePaddle安装方式;第3章使用MNIST数据集实现手写数字识别;第4章介绍CIFAR彩色图像识别;第5章介绍了自定义数据集的识别;第6章介绍了验证码的识别;第7章介绍了场景文字的识别;第8章实现了验
深度学习原理与PyTorch实战(第2版) 电子书
  • 集智俱乐部
  • 一本系统介绍深度学习技术及开源框架PyTorch的入门书。
Python计算机视觉与深度学习实战 电子书
  • 戴亮
  • 一本书入门计算机视觉,将深度学习理论融入视觉识别案例,搭建理论与实践的桥梁。
HCIA-Datacom 网络技术学习指南 电子书
  • 华为技术有限公司 主编
  • 本书共分为10章,主要内容包括数据通信与网络基础、构建互联互通的IP网络、构建以太交换网络、网络安全基础与网络接入、网络服务与应用、WLAN基础、广域网技术、网络管理与运维、IPv6基础及SDN与自动化基础。书中以各项技术的需求、起源和发展历程作为切入点,对技术原理、应用场景和配置方法进行了介绍。
用Python实现深度学习框架 电子书
  • 陈震
  • 本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
深度学习图像识别技术 电子书
  • 张晶
  • 适读人群:第一、打算学习并入门AI技术的高中、大中专、职高以及本科学生。第二、在各传统行业中,如农业、可再生资源、制造业及工业控制等,希望应用AI目标检测算法解决本行业问题的工程技术人员。第三、已经进入AI行业,但非AI算法工程师,希望自己动手亲自体验并学习AI技术的从业人员,如标注工程师、销售工程师、售后工程师、市场经理或产品经理等。1.人工智能专家教您利用深度学习技术快速落地图像识别项目。2.英特尔物联网事业部中国总经理陈伟博士倾力推荐。3.附赠超过4GB的案例素材资料包。
深度学习程序设计实战 电子书
  • 方林 编著
  • 本书以Python语言和Tensorflow为工具,由浅入深地讲述了深度学习程序设计的基本原理、算法和思考问题的方法,内容包括自顶向下的程序设计、递归程序设计、面向对象的程序设计、反向传播算法、三层神经网络、卷积神经网络、循环神经网络、生成式对抗网络和目标检测等。