100 条"深度学习与MindSpore实践(华为智能计算技术丛书)"搜索结果
  • 陈雷
  • MindSpore是华为公司开发的深度学习框架,兼容目前主流的深度学习框架,支持端/边/云全场景全栈协同开发。本书由陈雷教授倾力编著,陈雷教授是香港科技大学计算机科学与工程系教授,大数据研究所主任,IEEEFellow和ACM杰出科学家。《深度学习与MindSpore实践》系统介绍了深度学习的基础理论、常用的深度神经算法设计,并以大量基于MindSpore的实例帮助读者掌握深度学习算法的实现。此外,本书还对深度学习中的样本数据处理、可视化及端云协同进行了深入的探讨,因此我相信本书适合广大读者作为深度学习技术的入门读物。
华为MindSpore深度学习框架应用开发实战 电子书
  • 编著
  • 全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度学
人工智能深度学习综合实践 电子书
  • 罗卿,常城主编
  • 本书较为系统地介绍深度学习模型训练、计算机视觉模型应用、自然语言处理模型应用等技术。全书共9个项目,包括深度学习全连接神经网络应用、深度学习卷积神经网络应用、深度学习模型训练——循环神经网络应用、计算机视觉模型数据准备、计算机视觉模型训练与应用、计算机视觉模型部署、自然语言处理预训练模型数据准备、自然语言处理预训练模型训练与应用、自然语言处理模型部署等。本书以满足企业用人需求为导向、以岗位技能和综
人工智能深度学习基础实践 电子书
  • 张健,常城主编
  • 本书分为人工智能产品研发、深度学习数据应用、深度学习基础应用3篇共10个项目,内容包括:人工智能需求管理、设计人工智能产品、人工智能开发平台应用、数据采集工程应用、数据处理工程应用、数据标注工程应用等。
深度学习原理与实践 电子书
  • 陈仲铭
  • (1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。(2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。(3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。(4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。(5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。--唐春明 广州大学数学与信息学科学院副院长本书从原理、方法、实践这3个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。--杨刚 西安电子科技大学教授近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对ANN、CNN、RNN等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐!--吴健之 腾讯音乐高级工程师作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看!--张瑞 中软国际高级产品经理
深度学习算法与实践 电子书
  • 于子叶
  • 本书旨在为读者建立完整的深度学习知识体系。全书内容包含3个部分,第一部分为与深度学习相关的数学基础;第二部分为深度学习的算法基础以及相关实现;第三部分为深度学习的实际应用。
深度学习——原理、模型与实践 电子书
  • 主编
  • 本书是深度学习领域的入门教材,全面阐述了深度学习的知识体系,涵盖人工智能的基础知识以及深度学习的基本原理、模型、方法和实践案例,使读者掌握深度学习的相关知识,提高以深度学习方法解决实际问题的能力。全书内容包括人工智能基础、机器学习基础、深度学习主要框架、深度神经网络、卷积神经网络、循环神经网络、自编码器与生成对抗网络。
深度学习原理与 TensorFlow实践 电子书
  • 黄理灿
  • 本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
深度学习入门与TensorFlow实践 电子书
  • 林炳清
  • 基于TensorFlow2,系统讲述如何搭建、训练和应用深度学习模型。
人工智能和深度学习导论 电子书
  • 本书首先介绍了人工智能的基础知识,然后分别介绍了机器学习、深度学习、自然语言处理和强化学习中的重点概念和实践过程,包含逻辑斯谛回归、k最近邻、决策树、随机森林、支持向量机、卷积神经网络、循环神经网络、LSTM、自动编码器等。此外,本书的附录部分还分别简单介绍了Keras、TensorFlow、pandas等人工智能相关的工具。本书适用于高等院校电子信息类专业的人工智能导论课程,也适合想要对人工智能
深度学习与围棋 电子书
深度学习在动态媒体中的应用与实践 电子书
  • 唐宏、陈麒、庄一嵘
  • 本书是一本深度学习的基础入门读物,对深度学习的基本理论进行了介绍,主要以Ubuntu系统为例搭建了三大主流框架——Caffe、TensorFlow、Torch,然后分别在3个框架下,通过3个实战项目掌握了框架的使用方法,并详细描述了生产流程,最后讲述了通过集群部署深度学习的项目以及如何进行运营维护的注意事项。本书适合对深度学习有浓厚兴趣的读者、希望用深度学习完成设计的计算机专业或电子信息专业的高校
深度学习 电子书
  • [美]伊恩·古德费洛
  • 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
  • 徐立芳
  • 本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
数字电路与逻辑设计(微课版) 电子书
  • 华中科技大学计算机科学与技术学院 组编
  • 本书内容结合微电子产业和计算机硬件产业的最新发展现状和技术前沿,注重基础性、高阶性、创新性和挑战性相结合,采用模块化的思想对教学内容进行有机划分,全书共9章,可以分为三个部分。第一部分是数字逻辑电路的基础,由第1~3章组成,包括基本知识、逻辑代数基础、半导体与集成门电路;第二部分是数字逻辑电路的经典设计和分析方法,由4~8章组成,包括组合逻辑电路、触发器、时序逻辑电路、信号产生与变换电路、数模和模
计算机组成原理实验指导(基于RISC-V在线实训) 电子书
  • 组编
  • “计算机组成原理”是一门理论性、工程性和实践性都很强的专业核心基础课程,其实践教学对理论教学具有强支撑作用,是强化读者计算机系统能力、分析与解决复杂工程问题能力的重要途径。作者本着“理论与实践一体化、实验目标系统化、实验平台虚拟化、课程实验在线化、实验过程游戏化”的原则,历经十年持续的实践教学改革,开发了一系列原创的硬件在线仿真实验,建立了立足计算机系统、逐层递进、以设计型实验为主导的实践教学体系
计算机操作系统实验指导——基于RISC-V代理内核(在线实训版) 电子书
  • 组编
  • 本书为基于RISC-V代理内核的计算机操作系统实验教材,实验分为设计基础实验和挑战实验两个部分,主要内容包括RISC-V体系结构、PKE实验和实验环境配置、中断处理、内存管理、进程管理、文件系统。本书采用RISC-V代理内核在实现代码规模极简化的同时,也更好地保证可操作系统在概念和功能上的完整性,有助于学生将实验重点放在操作系统重要概念对应的实现。本书可作为计算机类、电子信息类相关专业操作系统课程
PyTorch与深度学习实战 电子书
  • 胡小春
  • 本书以PyTorch深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用PyTorch实现深度学习应用的重要内容。本书共7章,内容包括深度学习概述、PyTorch深度学习通用流程、PyTorch深度学习基础、手写汉字识别、文本生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现文本生成等。本书大部分章包含实训和课后习题,希望通过练习和操作实践,帮助读者巩固所学的内
Keras与深度学习实战 电子书
  • 张良均 主编
  • 本书以Keras深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用Keras进行深度学习的重要内容。全书共7章,内容包括深度学习概述、Keras深度学习通用流程、Keras深度学习基础、基于RetinaNet的目标检测、基于LSTM网络的诗歌生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现诗歌生成等。本书大部分章包含实训和课后习题,通过练习和操作实践,读者可
深度学习与TensorFlow实战 电子书
  • 李建军 王希铭 潘勉 等
  • 本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到
深度学习技术与应用 电子书
  • 许桂秋
  • 本书旨在介绍人工智能中深度学习的基础知识,为即将进入深度学习领域进行研究的读者奠定基础。全书共13章,其中,第1~4章为理论部分,第5~13章为应用部分。理论部分介绍了机器学习和深度学习的基本内容,以及TensorFlow开发框架的搭建和使用;应用部分设置了多个项目案例,并介绍了这些案例详细的实现步骤和代码,使读者在练习中熟悉和掌握相关知识的应用方法与技巧。本书采用项目驱动的编写方式,做到了理论和