100 条"Python机器学习与量化投资"搜索结果
  • 何海群
  • 生动讲解Python与金融量化结合,实例助初学者快速掌握编程。
Python深度学习与项目实战 电子书
  • 本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
Python期货量化交易:从入门到实践 电子书
  • 祝学礼
  • 本书是介绍Python编程及其在量化交易领域的实践技巧的图书,旨在帮助读者掌握基本的Python编程技能,并顺利应用于期货量化交易实践。
机器学习:公式推导与代码实现 电子书
  • 鲁伟
  • 本书基于NumPy与sklearn,介绍26个主流机器学习算法的实现。
场景化机器学习 电子书
  • [澳]道格·哈金(Doug
  • 本书展示了如何在业务场景中应用机器学习,全书分为三个部分。第一部分介绍有效的决策如何帮助公司提高生产率以保持竞争力,阐释如何使用开源工具和AWS工具将机器学习应用于业务决策中。第二部分以虚拟人物为主线,研究六个场景,这些场景展示了如何使用机器学习来制定各种业务决策。第三部分讨论如何在Web上设置和共享机器学习模型,还介绍了一些案例。
机器学习案例实战 电子书
  • 赵卫东
  • 机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特点;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗
动手学机器学习 电子书
  • 张伟楠
  • 本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量
机器学习公式详解 电子书
  • 谢文睿
  • 适读人群:(1)高等院校人工智能、计算机、自动化等相关专业机器学习方向的学生;(2)学术界机器学习领域的研究人员和教师;(3)工业界对机器学习感兴趣的专业人员和工程师。1.周志华教授“西瓜书”《机器学习》公式完全解析指南!“南瓜书”系Datawhale成员自学笔记,对“西瓜书”中250个重难点公式做了详细解析和推导(重难点公式覆盖率达99%),旨在解决机器学习中的数学难题。2.机器学习初学小白提升数学基础能力的必备练习册!以本科数学基础视角对“西瓜书”里比较难理解的公式加以解析和推导细节,补充大量重、难点数学知识和参考材料,分享在学习中遇到的“坑”以及跳过这个“坑”的方法,对于初学机器学习的小白也能上手练习!3.俞勇、王斌、李沐、程明明、陈光(博主@爱可可-爱生活)、徐亦达等人工智能领域大咖亲笔推荐
机器学习工程实战 电子书
  • [加] 安德烈·布可夫
  • 机器学习入门手册《机器学习精讲》姊妹篇,人工智能和机器学习领域专业人士的多年实践结晶,深入浅出讲解机器学习应用和工程实践。
机器学习(第2版) 电子书
  • 赵卫东 董亮 编著
  • 机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容
机器学习算法竞赛实战 电子书
  • 王贺,刘鹏,钱乾
  • 本书是算法竞赛领域一本系统介绍竞赛的图书,书中不仅包含竞赛的基本理论知识,还结合多个方向和案例详细阐述了竞赛中的上分思路和技巧。
机器学习算法评估实战 电子书
  • 宋亚统
  • 在机器学习算法的实际应用中,我们不仅要知道算法的原理,也要了解如何评估算法上线服务的可靠性。
机器学习(慕课版) 电子书
  • 主编
  • 本书是一本零基础的Illustrator软件的实战教材,旨在介绍如何使用Illustrator软件在平面设计领域的使用方法与技巧。本书首先介绍Illustrator软件在平面领域中的主要应用范围和领域,然后逐步由浅入深的介绍如何使用软件完成图形的设计与编辑、路径的绘制与编辑、图形样式的创建与编辑、文本与图表的创建与编辑、图层与蒙版的应用、效果类应用方法、混合与封套的应用方法等。书籍中所涉及的案例都
Python深度学习:逻辑、算法与编程实战 电子书
  • 何福贵 编著
  • 机器学习是人工智能领域一个极其重要的研究方向,而深度学习则是机器学习中一个非常接近AI的分支,其思路在于建立进行分析学习的神经网络,模仿人脑感知与组织的方式,根据输入数据做出决策。深度学习在快速的发展过程中,不断有与其相关的产品推向市场,显然,深度学习的应用将会日趋广泛。《Python深度学习:逻辑、算法与编程实战》是关于深度学习的理论、算法、应用的实战教程,内容涵盖深度学习的语言、学习环境、典型
智能投资:机器交易时代的崛起 电子书
  • 崔传刚
  • 在股市中,绝大部分散户并没有赚到钱。诺贝尔经济学奖得主、行为经济学家塞勒等人告诉我们,人天生具有很多的非理性行为,而且难以克服,而这正是大量散户亏钱的原因。随着投资市场越来越完善,投资者心态越来越成熟,今后的投资交易必将更多地被交给机器。智能投资可以通过大数据与计算机算法为普通的投资者提供低成本与低风险的投资服务。一扇新的大门渐渐开启。本书回顾了智能与金融的发展史,将智能的演进同金融的进化合二为一
零基础学机器学习 电子书
  • 黄佳
  • 轻松入门机器学习,理论实战并重,适合零基础学习者。
机器学习从原理到应用 电子书
  • 卿来云 黄庆明
  • 本书共11章,主要介绍机器学习的基本概念和两大类常用的机器学习模型,即监督学习模型和非监督学习模型。
Python计算机视觉与深度学习实战 电子书
  • 戴亮
  • 一本书入门计算机视觉,将深度学习理论融入视觉识别案例,搭建理论与实践的桥梁。
开放式基金投资能力量化研究 电子书
  • 刘广 著
  • 本书首先使用不同方法多角度揭示其投资业绩现状,并检验其业绩显著性、稳定性和持续性,从而获得一般性认识;然后尝试构建开放式基金投资能力概念和分析框架,将投资能力与投资业绩在内涵和外延上做严格区分,指出二者的区别和联系,进而对开放式基金投资能力进行详细考察,检验其显著性,并揭示交易成本和管理费用等对投资业绩的影响;最后,基于经典资产配置思想,分别从个股、行业和动态配置三个方面,初步提供提升开放式基金投
机器视觉与机器学习:算法原理、框架应用与代码实现 电子书
  • 宋丽梅 朱新军 编著
  • 《机器视觉与机器学习——算法原理、框架应用与代码实现》内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为ShapefromX;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、IntelRealSense等深度相机的知识与相关
用Python实现深度学习框架 电子书
  • 陈震
  • 本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题