100 条"陈静静 走向深度学习"搜索结果
  • 陈静静
  • 打开学生学习的“黑匣子”揭开课堂教学中关于“学习的迷思和困惑”1.陈静静,学习共同体研究院院长,华东师范大学教育学博士,对学习共同体理念有着深入的研究和丰富的实践。2.十多年来,作者观摩了3000多节课,囊括了各个学科和学段,观察了5000多位学生的完整学习过程,并通过各种方式对他们的学习过程进行了分析,探索出一套科学的课堂研究方法,教师能够迅速剖析学生的学习状态和成果,并据此进行课堂改进。3.理论与观察兼有:既有理论作支撑,又有详细的课堂观察记录,对一线教师的教学具有极强的启发性。4.双色印刷,给读者更好的阅读体验。推荐篇目:教学的起点:真正了解学生的已知与未知真实学习从学生安全地说出“我不懂”开始
用Python实现深度学习框架 电子书
  • 陈震
  • 本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
深度学习入门与TensorFlow实践 电子书
  • 林炳清
  • 基于TensorFlow2,系统讲述如何搭建、训练和应用深度学习模型。
Python深度学习(第2版) 电子书
TensorFlow深度学习项目实战(深度学习系列) 电子书
  • [美] 卢卡·马萨罗
  • 本书用TensorFlow框架针对现实场景设计深度学习系统,实现有趣的深度学习项目。
深度学习原理与 TensorFlow实践 电子书
  • 黄理灿
  • 本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
深度学习——原理、模型与实践 电子书
  • 主编
  • 本书是深度学习领域的入门教材,全面阐述了深度学习的知识体系,涵盖人工智能的基础知识以及深度学习的基本原理、模型、方法和实践案例,使读者掌握深度学习的相关知识,提高以深度学习方法解决实际问题的能力。全书内容包括人工智能基础、机器学习基础、深度学习主要框架、深度神经网络、卷积神经网络、循环神经网络、自编码器与生成对抗网络。
Python深度学习实战——基于Pytorch 电子书
  • 主编
  • 本书以深度学习框架PyTorch为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了基本机器学习操作的原理和在深度学习框架下的实践步骤。全书共16章,主要分别介绍了深度学习基础知识、深度学习框架及其对比,机器学习基础知识,深度学习框架基础,Logistic回归,多层感知器,计算机视觉,自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。??本书适合Pyth
TensorFlow深度学习基础与应用 电子书
  • 杨虹 谢显中 周前能 王智鹏 张安文编著
  • 本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
动手学深度学习(PyTorch版) 电子书
  • 阿斯顿·张(Aston Zhang),李沐(Mu Li),等
  • ·深度学习领域重磅作品《动手学深度学习》重磅推出PyTorch版本;·李沐、阿斯顿·张等大咖作者强强联合,精心编撰;·全球400多所大学采用的教科书,提供视频课程、教学PPT、习题,方便教师授课与学生自学;·能运行、可讨论的深度学习入门书,可在线运行源码并与作译者实时讨论。
深度学习与医学图像处理 电子书
  • 陈峰蔚 编著
  • 一本介绍“如何使用深度学习方法解决医学图像处理问题”的入门图书。
Python深度学习与项目实战 电子书
  • 本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
深度学习从入门到精通 电子书
  • 谢佳标 主编
  • 本书基于当前流行的深度学习框架之一——Keras,从新手的角度出发,详细讲解Keras的原理,力求帮助读者实现Keras从入门到精通。全书共9章,主要内容包括初识深度学习、深度学习的数据预处理技术、使用Keras开发深度学习模型、卷积神经网络及图像分类、循环神经网络在文本序列中的应用、自编码器、生成式对抗网络、模型评估及模型优化,以及深度学习实验项目。本书内容由浅入深、语言通俗易懂,从基本原理到案
人工智能深度学习基础实践 电子书
  • 张健,常城主编
  • 本书分为人工智能产品研发、深度学习数据应用、深度学习基础应用3篇共10个项目,内容包括:人工智能需求管理、设计人工智能产品、人工智能开发平台应用、数据采集工程应用、数据处理工程应用、数据标注工程应用等。
人工智能深度学习综合实践 电子书
  • 罗卿,常城主编
  • 本书较为系统地介绍深度学习模型训练、计算机视觉模型应用、自然语言处理模型应用等技术。全书共9个项目,包括深度学习全连接神经网络应用、深度学习卷积神经网络应用、深度学习模型训练——循环神经网络应用、计算机视觉模型数据准备、计算机视觉模型训练与应用、计算机视觉模型部署、自然语言处理预训练模型数据准备、自然语言处理预训练模型训练与应用、自然语言处理模型部署等。本书以满足企业用人需求为导向、以岗位技能和综
Keras深度学习与神经网络 电子书
  • 肖睿 程鸣萱 编著
  • 本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专
深度学习自然语言处理实战 电子书
  • 开课吧 组编 张楠 苏南 王贵阳 等编著
  • 近年来,基于深度学习方法的自然语言处理(NLP)已逐渐成为主流。本书共8章,主要介绍自然语言处理任务中的深度学习技术,包含深度学习理论基础、深度学习的软件框架、语言模型与词向量、序列模型与梯度消失/爆炸、卷积神经网络在NLP领域的应用、Seq2Seq模型与Attention机制、大规模预训练模型、预训练语言模型BERT,还给出了自然语言处理技术的高级应用和开发实例,并收录了基于PyTorch深度学
深度学习经典案例解析(基于MATLAB) 电子书
  • 赵小川
  • 《深度学习经典案例解析(基于MATLAB)》分为“基础篇”“应用篇”和“实战篇”。通过17个案例循序渐进地介绍了深度学习网络的构建、训练、应用,以及如何基于MATLAB快速生成可执行的C、C++代码并在硬件上部署实现,内容讲解由浅及深、层层递进。本书所讲解的案例均配有代码实现,并对代码进行了详细注解,读者可通过阅读代码对本书讲解的内容进行更加深入的了解。《深度学习经典案例解析(基于MATLAB)》
深度学习的数学——使用Python语言 电子书
TensorFlow深度学习从入门到进阶 电子书
  • 张德丰 编著
  • TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其支持多种客户端语言下的安装和运行。本书以TensorFlow为导线,进行机器学习,书中每章节都是以理论引出,TensorFlow应用巩固结束,理论与实践相结合,让读者快速掌握TensorFlow机器学习。本书共10章,主要包括内容有:TensorFlow介绍、TensorFlow编辑基础、TensorFlow进阶
人工智能和深度学习导论 电子书
  • 本书首先介绍了人工智能的基础知识,然后分别介绍了机器学习、深度学习、自然语言处理和强化学习中的重点概念和实践过程,包含逻辑斯谛回归、k最近邻、决策树、随机森林、支持向量机、卷积神经网络、循环神经网络、LSTM、自动编码器等。此外,本书的附录部分还分别简单介绍了Keras、TensorFlow、pandas等人工智能相关的工具。本书适用于高等院校电子信息类专业的人工智能导论课程,也适合想要对人工智能