得书 - 好书推荐、正版图书免费阅读
首页
书库
排行榜
VIP会员
新书
快讯
注册 | 登录
100 条"Spark机器学习进阶实战"搜索结果
Spark机器学习进阶实战
马海平于俊吕昕向海
本书由浅入深,介绍了Spark机器学习的算法和具体应用。
电子书
智能机器人制作进阶
臧海波
本书收录的22个精彩实例涵盖了模拟机器人、神经网络机器人、数字机器人、机器人衍生项目4个门类,内容包括机器人的工作原理、设计思路和具体实现方法。
电子书
场景化机器学习
[澳]道格·哈金(Doug
本书展示了如何在业务场景中应用机器学习,全书分为三个部分。第一部分介绍有效的决策如何帮助公司提高生产率以保持竞争力,阐释如何使用开源工具和AWS工具将机器学习应用于业务决策中。第二部分以虚拟人物为主线,研究六个场景,这些场景展示了如何使用机器学习来制定各种业务决策。第三部分讨论如何在Web上设置和共享机器学习模型,还介绍了一些案例。
电子书
Python机器学习入门
程晨
Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它具有丰富和强大的模块(库),能够很轻松地把用其他编程语言(尤其是C/C++)编写的各种模块联结在一起。这两年随着人们对人工智能的关注越来越多,大家对Python的学习热情也越来越高。在IEEE发布的编程语言排行榜中,Python已经多年排名第一。这本Python编程与机器学习的入门书,首先介绍了一些Python编程的基础知识,然
电子书
动手学机器学习
张伟楠
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量
电子书
机器学习公式详解
谢文睿
适读人群:(1)高等院校人工智能、计算机、自动化等相关专业机器学习方向的学生;(2)学术界机器学习领域的研究人员和教师;(3)工业界对机器学习感兴趣的专业人员和工程师。1.周志华教授“西瓜书”《机器学习》公式完全解析指南!“南瓜书”系Datawhale成员自学笔记,对“西瓜书”中250个重难点公式做了详细解析和推导(重难点公式覆盖率达99%),旨在解决机器学习中的数学难题。2.机器学习初学小白提升数学基础能力的必备练习册!以本科数学基础视角对“西瓜书”里比较难理解的公式加以解析和推导细节,补充大量重、难点数学知识和参考材料,分享在学习中遇到的“坑”以及跳过这个“坑”的方法,对于初学机器学习的小白也能上手练习!3.俞勇、王斌、李沐、程明明、陈光(博主@爱可可-爱生活)、徐亦达等人工智能领域大咖亲笔推荐
电子书
平面设计基础与实战:小白的进阶学习之路
侯维静
集沟通技巧、设计思维、工作经验和项目实战于一体的设计教程。
电子书
Python高手修炼之道:数据处理与机器学习实战
许向武
适读人群:1.没有编程知识的新手不同于一般的基础语法讲解教程,本书并未将Python开发限定于某个集成开发工具(IDE)中,而是采用交互式编程的方式来强化读者对语言特性的理解,帮助新手读者真正理解Python语言和Python编程。2.从未接触过Python语言,但了解一点编程知识的初学者本书通过对基础知识高度的提炼和概括,以避免初学者陷入低级且冗长的细节知识点而心生懈怠;同时,本书为初学者规划了从初级到高级的编程技能提升路线图。3.具有一定基础的Python程序员本书可以作为案头工具书来使用。本书从基础语法、基本技能讲起,涵盖了科学计算、数据处理、机器学习等领域,示例代码涉及30余个模块的使用。构建从Python入门到数据分析到机器学习的路线图,入门有章可循;1.讲解独到,常见盲点趣解析作者基于多年的经验积累,善于总结概括初学Python过程中的误区。2.内容全面,常用工具全涵盖书中介绍的Python工具包覆盖Numpy、Matplotlib、Pandas、SciPy、Scikit-Learn,方便读者拓展实用技能、掌握工作利器。3.拓展训练,重点知识有强化语感训练100题、Python内置函数(类)手册、从新手到高手的100个模块,强化知识点的掌握。4.代码完整,随时动手可复现本书提供了完整、可验证的代码,方便读者动手练习并强化理解。
电子书
云原生架构进阶实战
王玉平 主编
凝练云原生的核心思想和理念,通过讲述云原生敏捷基础架构构建过程和DevOps方法,并结合实际案例,为你展现云原生的实战场景和步骤。
电子书
机器学习与Python实践
黄勉
机器学习理论实践全书,12章内容丰富,适合各层次读者。
电子书
机器学习(第2版)
赵卫东 董亮 编著
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容
电子书
机器学习与数据挖掘
王璐烽
本书以项目实践作为主线,结合必需的理论知识,以任务的形式进行内容设计,每个任务都包含任务描述及任务实施的步骤,读者按照实施步骤进行操作就可以完成相应的学习任务,从而不断提升项目实践能力。本书主要内容涉及机器学习的基础知识,模型评估与选择,回归、分类、聚类等机器学习算法,数据挖掘的基础知识,数据分析与应用,以及通过用户行为分析预测项目学习如何将机器学习与数据挖掘应用到实际中。本书适合使用机器学习与数
电子书
机器学习(慕课版)
主编
本书是一本零基础的Illustrator软件的实战教材,旨在介绍如何使用Illustrator软件在平面设计领域的使用方法与技巧。本书首先介绍Illustrator软件在平面领域中的主要应用范围和领域,然后逐步由浅入深的介绍如何使用软件完成图形的设计与编辑、路径的绘制与编辑、图形样式的创建与编辑、文本与图表的创建与编辑、图层与蒙版的应用、效果类应用方法、混合与封套的应用方法等。书籍中所涉及的案例都
电子书
Python机器学习经典实例
用流行的Python库scikitlearn解决机器学习问题。
电子书
跟着迪哥学:Python数据分析与机器学习实战
唐宇迪
本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
电子书
基于Hadoop与Spark的大数据开发实战
肖睿 丁科 吴刚山
大数据技术让我们以一种前所未有的方式,对海量数据进行分析,从中获得有巨大价值的产品和服务,最终形成变革之力。本书围绕Hadoop和Spark两个主流大数据技术进行讲解,主要内容包括Hadoop环境配置、Hadoop分布式文件系统(HDFS)、Hadoop分布式计算框架MapReduce、Hadoop资源调度框架YARN与Hadoop新特性、Hadoop分布式数据库HBase、数据仓库Hive、大数
电子书
机器人构建实战
丘柳东 王牛 李瑞峰 陈阳
随着科技的不断发展,软硬件之间的整合越来越密切,机器人也在这样的大环境下获得了前所未有的发展。机器人构建实战是一本基础的介绍机器人设计与搭建的指南,能够帮助更多的人了解机器人。机器人构建实战通过6篇,共计30章内容,全面细致地向读者介绍了有关机器人的相关知识。机器人构建实战从基础知识讲起,分别介绍了避障机器人、除障机器人、全向运动机器人以及几个综合项目。机器人构建实战内容全面、讲解细致,可作为高等
电子书
FlaskWeb开发入门、进阶与实战
张学建
本书使用Python语言开发FlaskWeb程序的知识,并通过具体实例讲解了使用Flask框架的方法和流程。
电子书
Spark海量数据处理:技术详解与平台实战
范东来
在数字经济时代,数据是重要的资源要素;同时,新的数据又在源源不断地产生,企业面临的一个基本问题就是如何管理和利用这些数据,这对传统的数据处理方法与分析框架提出了新的诉求和挑战,也是全球业界与学界为关心的问题。为了满足大数据时代对信息的快速处理的需求,一个分布式的开源计算框架ApacheSpark应运而生。经过十年的发展,Spark已经成为目前大数据处理的标杆,在整个业界得到了广泛的使用。对大数据工程师来说,用Spark构建数据管道无疑是很好的选择,而对数据科学家来说,Spark也是高效的数据探索工具。本书基于Spark发行版2.4.4写作而成,包含大量的实例与一个完整项目,技术理论与实战相结合,层次分明,循序渐进。本书不仅介绍了如何开发Spark应用的基础内容,包括Spark架构、Spark编程、SparkSQL、Spark调优等,还探讨了StructuredStreaming、Spark机器学习、Spark图挖掘、Spark深度学习、Alluxio系统等高级主题,同时完整实现了一个企业背景调查系统,借鉴了数据湖与Lambda架构的思想,涵盖了批处理、流处理应用开发,并加入了一些开源组件来满足业务需求。学习该系统可以使读者从实战中巩固所学,并将技术理论与应用实战融会贯通。本书适合准备学习Spark的开发人员和数据分析师,以及准备将Spark应用到实际项目中的开发人员和管理人员阅读,也适合计算机相关专业的高年级本科生和研究生学习和参考,对于具有一定的Spark使用经验并想进一步提升的数据科学从业者也是很好的参考资料。
电子书
机器学习与大数据技术
牟少敏
本书较为全面地论述了机器学习、深度学习、大数据技术与图像处理技术的基本概念、基础原理和基本方法,以农业为应用场景,力求通缩易懂,深入浅出的介绍了与机器学习、深度学习、大数据技术与图像处理技术问题联系密切的内容。全书主要分为4大部分:机器学习、大数据技术和图像处理技术的基础知识;经典的机器学习基本理论和方法,以及深度学习和大数据未来的发展;实践应用;机器学习和人工智能的数学基础与编程基础。
电子书
机器学习从原理到应用
卿来云 黄庆明
本书共11章,主要介绍机器学习的基本概念和两大类常用的机器学习模型,即监督学习模型和非监督学习模型。
文章导航
<
1
2
3
4
5
>
推荐书籍
相关词语
数据分析
机器学习
计算机
研究
2021
一人で頑張って
人工智能
教材
高等学校
设计
侯维静
程序设计
软件工具
Python
算法
Kaggle
深度学习
python编程
从入门到实践
大数据
数据处理
Scala
spark
hadoop
海量数据
技术实战
意见反馈
我的书架
公众号
关注微信公众号