Python机器学习编程与实战

Python机器学习编程与实战

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

内容简介

本书共8章,内容包括Python概述、NumPy数值计算、pandas基础、pandas进阶、Matplotlib绘图、scikit-learn、餐饮企业综合分析与预测、通信运营商客户流失分析与预测。前6章设置了选择题、填空题和操作题,后两章设置了操作题,希望通过练习和操作实践,读者可以巩固所学的内容。

Python机器学习编程与实战是2020年由人民邮电出版社出版,作者林耀进 张良均。

得书感谢您对《Python机器学习编程与实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
机器学习实战 电子书
本书共11章,从推荐系统的发展历史、基本构成开始,依次剖析推荐系统的内容召回、协同过滤召回、深度学习召回中具有代表性的模型;再从经典排序模型到基于深度学习的排序,顺势介绍会话推荐、强化学习推荐及工业级推荐,搭建了完整的推荐系统技术体系,这是一个由浅入深的系统学习过程。
机器学习案例实战 电子书
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特点;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗
Python实战速成手册:数据分析+机器学习+深度学习 电子书
本书基于Python语言,介绍了数据分析、机器学习、深度学习等内容,涉及统计学基础、Python基础、Python面向对象入门、在Python中操作MySQL、Pandas、Matplotlib、人工智能、Scikit-learn、神经网络等。书中包括大量代码和综合练习,以及丰富的实战案例。
Python深度学习与项目实战 电子书
本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
Python编程入门与实战(第3版) 电子书
本书是一本全面介绍Python编程,并针对多个应用场景给出解决方案的编程手册。从Python的基础知识开始,介绍了数据类型、函数、条件、循环等基本概念,展示了生成器、面向对象编程等具有Python特色的进阶理念,并给出了定位和排除异常、测试代码、调试的方法。随后,本书针对GUI、数据科学等实用场景,使用Python解决实际问题。最后,本书给出了发布Python程序的方法。本书适合想要学习编程或有一