机器学习(第2版)

机器学习(第2版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

内容简介

机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容全、案例丰富,每章都提供Python程序代码和习题,供读者巩固所学知识。另外,本书还为读者提供了配套的微课视频。

机器学习(第2版)是2022年由人民邮电出版社出版,作者赵卫东 董亮 编著。

得书感谢您对《机器学习(第2版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
实用机器学习 电子书
大数据时代为机器学习的应用提供了广阔的空间,各行各业涉及数据分析的工作都需要使用机器学习算法。本书围绕实际数据分析的流程展开,着重介绍数据探索、数据预处理和常用的机器学习算法模型。本书从解决实际问题的角度出发,介绍回归算法、分类算法、推荐算法、排序算法和集成学习算法。在介绍每种机器学习算法模型时,书中不但阐述基本原理,而且讨论模型的评价与选择。为方便读者学习各种算法,本书介绍了R语言中相应的软件包
场景化机器学习 电子书
本书展示了如何在业务场景中应用机器学习,全书分为三个部分。第一部分介绍有效的决策如何帮助公司提高生产率以保持竞争力,阐释如何使用开源工具和AWS工具将机器学习应用于业务决策中。第二部分以虚拟人物为主线,研究六个场景,这些场景展示了如何使用机器学习来制定各种业务决策。第三部分讨论如何在Web上设置和共享机器学习模型,还介绍了一些案例。
机器学习案例实战 电子书
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论了TensorFlow、PySpark、TI-ONE等主流机器学习平台的主要特点;然后结合Tableau介绍了数据可视化在银行客户用卡行为分析的应用。在此基础上,利用上述介绍的这些平台,通过多个项目案例,详细地分析了决策树、随机森林、支持向量机、逻辑回归、贝叶斯网络、卷积神经网络、循环神经网络、对抗
Python机器学习入门 电子书
Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它具有丰富和强大的模块(库),能够很轻松地把用其他编程语言(尤其是C/C++)编写的各种模块联结在一起。这两年随着人们对人工智能的关注越来越多,大家对Python的学习热情也越来越高。在IEEE发布的编程语言排行榜中,Python已经多年排名第一。这本Python编程与机器学习的入门书,首先介绍了一些Python编程的基础知识,然
动手学机器学习 电子书
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量