100 条"AIoT系统开发:基于机器学习和Python深度学习"搜索结果
  • [印] 阿米塔·卡普尔
  • 融合人工智能和物联网两大热点技术,将人工智能的优越方法应用到物联网的构建中,形成更加智能的物联网系统。
Python深度学习实战——基于Pytorch 电子书
  • 主编
  • 本书以深度学习框架PyTorch为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了基本机器学习操作的原理和在深度学习框架下的实践步骤。全书共16章,主要分别介绍了深度学习基础知识、深度学习框架及其对比,机器学习基础知识,深度学习框架基础,Logistic回归,多层感知器,计算机视觉,自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。??本书适合Pyth
Python 深度学习 电子书
  • 吕云翔 刘卓然 关捷雄 等编著
  • 《Python深度学习》以深度学习框架为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架(以PyTorch为例)基础、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信
Python机器学习 电子书
  • 郭羽含 陈虹 肖成龙 主编
  • 《Python机器学习》从实用的角度出发,整合Python语言基础、数据分析与可视化、机器学习常用算法等知识。内容从*基本的Python编程基础入手,由浅入深、循序渐进地讲授NumPy库和Matplotlib库,以及复杂的机器学习基本理论和算法,并突出知识的实用性和可操作性。《Python机器学习》力求以浅显的语言讲解复杂的知识,以直观的案例辅助读者理解,并以图表形式展示代码和运行结果,配合习题巩
机器学习Python实战 电子书
  • 张松慧 陈丹 主编
  • 本书使用Python的机器学习算法库scikit-learn讲解机器学习重要算法的应用,内容包括机器学习认知、数据预处理、KNN算法、线性回归算法、逻辑回归算法、朴素贝叶斯算法、决策树与随机森林算法、支持向量机、k-mcans算法、神经网络、模型评估与优化。本书使用通俗易懂的语言、丰富的图表和大量的案例对机器学习的重要算法进行讲解,提供一条从实践出发掌握机器学习知识的途径,读者即使没有很扎实的数学
Python机器学习入门 电子书
  • 程晨
  • Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它具有丰富和强大的模块(库),能够很轻松地把用其他编程语言(尤其是C/C++)编写的各种模块联结在一起。这两年随着人们对人工智能的关注越来越多,大家对Python的学习热情也越来越高。在IEEE发布的编程语言排行榜中,Python已经多年排名第一。这本Python编程与机器学习的入门书,首先介绍了一些Python编程的基础知识,然
Python实战速成手册:数据分析+机器学习+深度学习 电子书
  • 方勇 著
  • 本书基于Python语言,介绍了数据分析、机器学习、深度学习等内容,涉及统计学基础、Python基础、Python面向对象入门、在Python中操作MySQL、Pandas、Matplotlib、人工智能、Scikit-learn、神经网络等。书中包括大量代码和综合练习,以及丰富的实战案例。
Python机器学习经典实例 电子书
  • 用流行的Python库scikitlearn解决机器学习问题。
Python机器学习开发实战 电子书
  • 王新宇
  • Python机器学习入门,以实战为重点,配有大量代码和案例,简单、快速、易学。
机器学习与Python实践 电子书
  • 黄勉
  • 机器学习理论实践全书,12章内容丰富,适合各层次读者。
用Python实现深度学习框架 电子书
  • 陈震
  • 本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
Python深度学习(第2版) 电子书
Python深度学习与项目实战 电子书
  • 本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
Python机器学习编程与实战 电子书
  • 林耀进 张良均
  • 本书共8章,内容包括Python概述、NumPy数值计算、pandas基础、pandas进阶、Matplotlib绘图、scikit-learn、餐饮企业综合分析与预测、通信运营商客户流失分析与预测。前6章设置了选择题、填空题和操作题,后两章设置了操作题,希望通过练习和操作实践,读者可以巩固所学的内容。
Python机器学习入门与实战 电子书
  • 桑园 编著
  • 本书以零基础讲解为特色,用实例引导读者学习,深入浅出地介绍Python机器学习的相关知识和实战技能。
深度学习:基于Python语言和TensorFlow平台(视频讲解版) 电子书
  • 谢琼
  • 本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
深度学习的数学——使用Python语言 电子书
深度学习 电子书
  • [美]伊恩·古德费洛
  • 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
  • 徐立芳
  • 本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
机器学习 电子书
  • 董亮
  • 机器学习基础与高级内容全面讲解,实例丰富,易于学习巩固。
深度学习经典案例解析(基于MATLAB) 电子书
  • 赵小川
  • 《深度学习经典案例解析(基于MATLAB)》分为“基础篇”“应用篇”和“实战篇”。通过17个案例循序渐进地介绍了深度学习网络的构建、训练、应用,以及如何基于MATLAB快速生成可执行的C、C++代码并在硬件上部署实现,内容讲解由浅及深、层层递进。本书所讲解的案例均配有代码实现,并对代码进行了详细注解,读者可通过阅读代码对本书讲解的内容进行更加深入的了解。《深度学习经典案例解析(基于MATLAB)》