"数据分析/挖掘"相关书籍

很抱歉,没有找到相关图书

小编已在寻找书籍的路上~

相关书籍
IBM SPSS Modeler 18.0数据挖掘权威指南 电子书
联袂推荐 暨南大学教授、博士生导师刘建平,暨南大学研究生院副院长、经济学院统计学系副主任、教授、博士生导师陈光慧,天善智能创始人梁勇,IBM技术专家刘咏梅,IBM数据科学家钟云飞,广东省环保厅环境咨询专家委员会专家、广东柯内特环境科技有限公司总经理朱斌 本书特色 内容全面:涉及数据读取、数据处理、数据可视化、统计分析与检验、数据挖掘算法、自动建模、集成与扩展、模型部署、性能优化、数据挖掘方法论等诸多内容; 讲解透彻:既有理论的讲解,又涵盖应用的实践,而且在工具的介绍上,尽可能包括每一个选项的内容和应用形式,力求让读者“吃透”每一章节的内容; 突出实战:集行业经验、项目实践、算法剖析、应用技巧于一身,配套提供数据文件以及数据模型文件,方便读者动手实践。
大数据分析与挖掘 电子书
数据科学与大数据技术专业系列规划教材。强调概念+算法实践,让你“小数据”上会“算”,“大数据”上“算得快”。
大数据技术基础——基于Hadoop与Spark 电子书
将Hadoop和Spark组合起来进行剖析,呈现完整的大数据技术方案。
机器学习实战 电子书
《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。
大数据时代的数据挖掘 电子书
(1)内容全面,覆盖当前数据挖掘的主要应用。在介绍每个应用案例时,详细阐述应用的背景,该领域中数据的来源和特点,数据采集与预处理方式,应用领域中数据挖掘的任务和实施数据挖掘技术的难点。同时提供相应的数据挖掘算法分析、工具设计以及系统实现。 (2)条理清晰、便于理解。一方面,面向热爱和关心数据挖掘技术的学术界和工业界读者,帮助他们更好地理解研究的目的和应用的基础;另一方面,让没有太多相关技术背景的读者可以通过阅读本书能够了解数据挖掘的意义和价值,可以看出数据挖掘是如何被广泛地应用于实际案例并成为解决各种问题的核心工具。
Python数据分析与挖掘 电子书
本书面向大数据应用型人才,以任务为导向,系统地介绍Python数据分析与挖掘的常用技术与真实案例。全书共7章,第1、2章介绍Python数据分析的常用模块及其应用,涵盖NumPy数值计算模块、pandas数据分析模块,较为系统地阐述Python数据分析的方法;第3、4章介绍轻量级的数据交换格式JSON和连接MySQL数据库的pymysql模块,并以此进行数据综合案例的分析;第5章介绍Matplot