Deep Learning

Deep Learning:AdaptiveComputationandMachineLearningseries

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

作者简介

Ian Goodfellow is Research Scientist at OpenAI. Yoshua Bengio is Professor of Computer Science at the Université de Montréal. Aaron Courville is Assistant Professor of Computer Science at the Université de Montréal.

Deep Learning是2016年由TheMITPress出版,作者IanGoodfellow。

得书感谢您对《Deep Learning》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
机器学习实战 电子书
《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。
用Python实现深度学习框架 电子书
本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
TensorFlow技术解析与实战 电子书
TensorFlow是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。
机器学习及应用(在线实验+在线自测) 电子书
机器学习原理与实例代码,包括决策树、神经网络等11章。
Python 3破冰人工智能:从入门到实战 电子书
数学基础:从历年数学建模竞赛入手,解读人工智能中的数学方法。 编程实践:100余个代码实例,全面讲解网络爬虫、数据存储与数据分析等内容。 算法应用:实战案例辅以丰富图解,详尽分析人工智能算法特性及其应用场景。