深度学习

  • 周志明
  • 这是一部对人工智能充满敬畏之心的匠心之作,作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。
  • TariqRashid
  • 拥有物理学学士学位、机器学习和数据挖掘硕士学位。他常年活跃于伦敦的技术领域,领导并组织伦敦Python聚会小组(近3000名成员)。
  • 吴颖惠
  • 互联网与深度学习结合,探讨教学策略及方法。
  • 王喆
  • 适读人群:本书既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本科生、研究生、博士生阅读,帮助他们建立深度学习推荐系统的技术框架,通过学习前沿案例加强深度学习理论与推荐系统工程实践的融合能力。  一线大厂推荐工程师倾囊相授  教你从零开始构建前沿、实用的推荐系统知识体系  揭秘巨头公司推荐系统背后的逻辑  梳理深度学习推荐系统的发展脉络,厘清每个关键模型和技术的细节  引导读者掌握工业界模型设计背后真正的“银弹”  诸葛越、唐杰、张俊林、刘知远、杨子等产学界专家倾情力荐,朱小强作序
  • [美]弗朗索瓦·肖莱
  • Keras之父、谷歌人工智能研究员弗朗索瓦·肖莱执笔,深度学习领域力作。
  • 李玲
  • 适读人群:1.人工智能相关专业教师与学生;2.人工智能领域从业人员。《智能计算系统》由深度学习处理器芯片研究的开拓者陈云霁领衔,中科院计算所、软件所的专家学者倾心写就。智能领域系统能力培养大成之作!领衔作者陈云霁带领的团队曾研制了国际上个深度学习处理器芯片“寒武纪1号”,本书凝聚了作者团队多年的科研和教学成果,是前沿研究与技术实践结合,快速提升智能领域系统能力的教材和技术参考书。
  • (法)奥雷利安•杰龙(AurélienGéron)
  • 适读人群:1、机器学习、深度学习从业者;2、机器学习或者深度学习算法工程师;3、从初级到高级的各级学生、教师、研究人员;4、其他对机器学习和Scikit-Learn、Keras、TensorFlow感兴趣的人员1)“美亚”人工智能图书畅销榜首图书,基于TensorFlow2和Scikit-Learn的新版本全面升级;2)Keras之父和TensorFlow移动端负责人鼎力推荐;3)从实践出发,通过具体的示例、较少的理论和可用于生产环境的Python框架来帮助你直观地理解并掌握构建智能系统所需要的概念和工具;4)实用性强。没有太多复杂的数学公式推导,每章都附有练习题和代码,可以帮助你应用所学的知识。

深度学习相关书籍

深度学习 电子书
本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
深度学习与飞桨PaddlePaddle Fluid实战 电子书
飞桨PaddlePaddle是百度推出的深度学习框架,不仅支撑了百度公司的很多业务和应用,而且随着其开源过程的推进,在其他行业得到普及和应用。 本书基于2019年7月4日发布的飞桨PaddlePaddle Fluid 1.5版本(后续版本会兼容旧版本),以真实案例介绍如何应用飞桨PaddlePaddle解决主流的深度学习问题。 本书适合对人工智能感兴趣的学生、从事机器学习相关工作的读者阅读,尤其适合想要通过飞桨PaddlePaddle掌握深度学习应用技术的研究者和从业者参考。 本书包括以下内容: ● 飞桨PaddlePaddle 的核心设计思想; ● PaddlePaddle在MNIST上进行手写数字识别; ● 图像分类网络实现案例; ● “天网”中目标检测和像素级物体分割的实现; ● NLP技术应用案例 :word2vec、情感分析、语义角色标注及机器翻译; ● Paddle-Mobile与Anakin框架等高级主题; ● 飞桨PaddlePaddle与TensorFlow、Caffe框架的常用层对比。
JavaScript深度学习 电子书
深度学习扛鼎之作《Python深度学习》姊妹篇,前端工程师不可错过的AI入门书。
Python 深度学习 电子书
《Python深度学习》以深度学习框架为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架(以PyTorch为例)基础、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信
PyTorch深度学习实战 电子书
1.PyTorch核心开发者教你使用PyTorch创建神经网络和深度学习系统的实用指南。2.详细讲解整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及对结果进行可视化。3.PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:a.全面掌握PyTorch相关的API的使用方法以及系统掌握深度学习的理论和方法;b.快速从零开始构建一个真实示例:肿瘤图像分类器;c.轻松学会使用PyTorch实现各种神经网络模型来解决具体的深度学习问题;d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。4.PyTorch联合创作者SoumithChintala作序推荐!5.书中所有代码都是基于Python3.6及以上的版本编写的,提供源代码下载。
深度学习原理与实践 电子书
(1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。 (2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。 (3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。 (4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。 (5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。 将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。 --唐春明 广州大学数学与信息学科学院副院长 本书从原理、方法、实践这 3 个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。 --杨刚 西安电子科技大学教授 近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对 ANN、CNN、RNN 等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐! --吴健之 腾讯音乐高级工程师 作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看! --张瑞 中软国际高级产品经理